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Representation Systems, Orthoposets
and Quantum Logic

Olivier Brunet1

We present a new approach of quantum logic and quantum systems description based on
representation systems. This general algebraic formalism permits to represent systems
from different points of view and reason about partial descriptions of it even though
the descriptions are not available simultaneously (that is they can be associated to
different points of view). We use a special form of these structures to define a method
for decomposing orthoposets into boolean algebras, in such a way that it permits to
consider more properties about a quantum system than using usual methods, and to
define general (and, we hope, intuitive) embeddings of quantum structures into Heyting
algebras.
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1. INTRODUCTION

The logical study of quantum mechanics, originated in the thirties by Birkhoff
and von Neumann (1936), aims at investigating formally what makes quantum
mechanics so different from the classical world. It is based on the use of closed
subspaces of Hilbert spaces for representing properties about a quantum system,
and on similarities between usual operations on subspaces and logical connectives.
Since then, many attempts have been made to identify which properties of Hilbert
spaces where responsible for the rupture between quantum mechanics and classical
newtonian mechanics (Mackey, 1957; Piron, 1976; Pták and Pulmannová, 1991)
and have led to many forms of quantom logics, the most standard one being
based on orthomodular lattices (Hughes, 1989; Svozil, 1998; Chiara and Giuntini,
2001).

Unfortunately, despite the large amount of publications available on this topic,
these works have remained extremely theoretical, have led to very little applications
and are still subject to severe criticisms (see for instance Girard, 2003).

In this article, we present an approach of quantum logic and quantum sys-
tems description based on representation systems (Brunet, 2002a,b, 2003a,b). This
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general algebraic formalism permits to represent systems from different points of
view and reason about partial descriptions of it even though the descriptions are
not available simultaneously (that is they can be associated to different points of
view). With the restriction that for every point of view, the descriptions associated
to it form a boolean algebra (which structure is usually seen as an emblematic
representation of classical information), every representation systems can be as-
sociated to an orthoposet, and conversely, every orthoposet can be obtained from
a boolean representation system.

The relations between these two kinds of structures, and some properties of
boolean representation systems, permit to develop a general way to extend ortho-
posets by adding partial descriptions, which di not correspond to any point of view,
but which are relevant, with regards to the considered boolean representation sys-
tem. This completion method enables to manipulate more expressive descriptions
of the system. Moreover, using a particular type of completions, we show that
it is possible to embed an orthoposet into a Heyting algebra in such a way that
the partial order and the orthocomplement are preserved. Thus, considering our
approach where elements of the original orthoposet are seen as partial descriptions
of a system, this constitutes a general (and, we think, intuitive) way to obtain a
logical way to study it.

The article is divided as follows: we first introduce representation systems in
section 2 and then restrict to boolean representation systems and study the relation-
ships that exist between these structures and orthoposets (section 3). Then, we use
a decomposition of an orthoposet into boolean algebras using boolean representa-
tion systems to define a notion of consistency on elements of an orthoposetP . This
permits to extend it by considering collections of elements of P which behave in a
convenient way (section 4). Finally, in section 5, we show how these constructions
permit to define a general way to embed orthoposets into Heyting algebras.

2. REPRESENTATION SYSTEMS

The starting idea for representing partial descriptions of a system is to use a
partially order set (or poset for short) 〈P , ≤〉 where elements of P stand for partial
descriptions of a given situation and ≤ is a partial order defined on P , so that if two
elements x , y ∈ P are such that x ≤ y, then x corresponds to more information
than y.

Example 2.1. (Firefly on a Box) Consider a firefly trapped inside a closed box
divided into four quadrants by transparent walls (depicted in the Fig. 1(a). If one
observes the box from below, two partial descriptions can be obtained: either
the firefly is on the left side, or it is on the right side. By adding a third partial
description yielding no information at all (which we will call top and write �), we
get a three-elements poset: Px = {�, left, right}. We define the partial order ≤ by
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Fig. 1. Firefly in a box.

stating that � is the greatest element and the other two elements are not comparable.
This poset is depicted in Fig. 1(b), together withPy(c), based on informations such
as up and down, and their product Px × Py (d).

Representation systems (Brunet, 2002a,b, 2003a,b) are general algebraic
structures intended to model partial descriptions of a system. They are based on
a collection of posets, each corresponding to a way to observe the system, to a
point of view. Thus, given a set I indexing the different points of view, we con-
sider a collection of posets {Pi |i ∈ I}, so that for each i ∈ I, Pi is a set of partial
descriptions related to point of view i .

Now, since all these posets are seen as partial representations of a single
system, we introduce a collection of functions { fi | j : P j → Pi |i, j ∈ I} called
transformation functions which purpose is, given a partial description x ∈ Pi , to
transform it into a description f j |i (x) ∈ P j . The intuition is that starting from an
element x ∈ Pi , during the translation process, no information is added and as little
information as possible is lost. We formalize these functions using three properties:

Identity ∀i ∈ I, ∀x ∈ Pi , fi |i (x) = x
Monotony ∀i, j ∈ I, ∀x , y ∈ Pi , x ≤i y ⇒ f j |i (x) ≤ j f j |i (y)
Composition ∀i, j, k ∈ I, ∀x ∈ Pi , fk|i (x) ≤k fk| j ◦ f j |i (x)

corresponds to the fact that nothing has to be done for translating an element of Pi

to itself. Monotony expresses the fact that no information is added: if a description
x ∈ Pi is more informative than y (that is x ≤i y), then every information in f j |i (y)



2190 Brunet

is both present in y and expressible in P j , so that it also has to be present in f j |i (x).
Finally, the meaning of Composition is that information may be lost in the process:
for i, j ∈ I and x ∈ Pi , x should be seen as more informative than f j |i (x). But
since these two elements to not belong to the same poset, they cannot be compared
directly. Instead, we demand that translated into every poset Pk , one gets a more
informative element if starting from x rather than from f j |i (x). In other words, for
all k ∈ I, one has fk|i (x) ≤k fk| j ◦ f j |i (x). We summarize this as follows:

Definition 2.1. (Representation System) A representation system is a triplet

S = 〈I, {Pi }i∈I , { fi | j }i, j∈I〉
where everyPi is a poset, and where the transformation functions { fi | j : P j → Pi }
verify the identity, monotony and composition properties introduced above.

Example 2.2. (Firefly in a box) The previous example can be turned into a repre-
sentation system, by considering I = {x , y}. The posets Px and Py are the same
as those defined earlier. Concerning the transformation functions, since knowing
for instance that the firefly is on the left- or right-side of the box does not tell any-
thing whether it is up or down, it follows that ∀u ∈ Px , fy|x (u) = �y . Similarly,
fx |y maps elements of Py to �x . By adding fx |x and fy|y which are the identity
functions, it is easy to verify that the obtained structure is a representation system.

Example 2.3. (Time of earth) Consider the Earth at a given moment, and define
points of view as corresponding to time zones, characterized by their difference
with the G.M.T. zone. For every time zone, the possible partial description have
the form of an interval [b, e] where b, e are integers in the set {0, 1, 2, . . . , 23}.
They correspond to assertions of the form “the local time is between b and e”
and are partially ordered by the overlapping relation, modulo 24. For instance,
[3, 4] ≤ [2, 7] ≤ [23, 8].

To turn an interval from a time zone t1 to a time zone t2, the natural definition is
ft2|t1 ([b, e]) = [�b − t1 + t2�, �e − t1 + t2�] where addition is considered modulo
24. For instance, if the time is between 12 and 14 in the GMT time zone (t1 = 0h),
it is between 4 and 6 Pacific time (t2 = −8h): f−8h|0h([12, 14]) = [4, 6]. One
can easily show that these definitions do correspond to a representation system.
Moreover, considering time zones which have a non integer difference with G.M.T.
(such as India, +5h30) illustrates the role of the composition property: [4, 6] =
f−8h|0h([12, 14]) ≤ f−8h|+5h30 ◦ f+5h30|0h([12, 14]) = [3, 7].

A last example shows how transformation systems do closely relate to some al-
gebraic structures and functions such as Galois connections and closure operators
(Erné et al., 1992; Birkhoff, 1967; Gratzer, 1978).
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Definition 2.4. (Upper closure operator) Given a poset P , an upper closure op-
erator ρ : P → P is a monotonous function which verifies:

∀x , x ≤ ρ(x) ∀x , ρ(x) = ρ◦ρ(x) (1)

An upper closure operator ρ defined on a poset P can conveniently be used
to represent an approximation operation: given an element x of P seen as a partial
description, applying ρ corresponds to losing some information (so that x ≤ ρ(x)
or, in other words, x is more precise than ρ(x)), and since ρ ◦ ρ(x) = ρ(x), no more
information can be lost by applying ρ again. We now show that a representation
system can be obtained from a collection of upper closure operators defined on a
single poset.

Example 2.5. (Poset approximation) Consider a poset P and a collection {ρi }i∈I
of upper closure operators on P and define for every i ∈ I, Pi = ρi (P) = {x ∈
P|x = ρi (x)} and for i, j ∈ I, fi | j as the restriction of ρi to P j . This way,
〈I, {Pi }, { fi | j }〉 is a representation system.

More details about this relationship can be found in (Brunet, 2002a, 2003, in
press), and we only mention that the three properties characterizing transformation
functions (that is Identity, Monotony and Composition) can actually be derived
from the definition of Galois connections.

3. RESTRICTION TO BOOLEAN ALGEBRAS

We will now restrict ourselves to a special class of representation systems,
where each poset is a boolean algebra. This way, every partial description of the
system can be seen as classical information, since in classical systems, observable
events do form a boolean algebra. A few adaptations have to be applied to our
formalism, in order to have our transformation functions behave properly with
regards to the additional connectives: we will add two properties, one for negation
and another one for disjunction.

Suppose first that one has x ∈ Pi and y ∈ P j such that f j |i (x) ≤ y. This
means that x , even after some loss of information due to the translation process, is
more informative than y. We want to use this information to compare x⊥ and y⊥,
since intuitively, y⊥ would in that case be more informative than x⊥, which can
be expressed as fi | j (y⊥) ≤i x⊥. Thus, we define a new property:

Inversion ∀i, j ∈ I, ∀x ∈ Pi , ∀y ∈ P j , f j |i (x) ≤ j y ⇒ fi | j (y⊥) ≤i x⊥

Now, we will add another condition concerning the disjunction to represent
the fact that in the application of a transformation function, one loses as little in-
formation as possible. This means that if an element z ∈ P j is more general that
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both x ∈ Pi and y ∈ Pi (that is f j |i (x) ≤ j z and f j |i (y) ≤ j z), then it is more gen-
eral than x ∨ y. From this follows the equality between f j |i (x ∨ y) and f j |i (x) ∨
f j |i (y) by taking z = f j |i (x) ∨ f j |i (y). It is this equality which will use as our last
property:

Join-Preservation ∀i, j ∈ I, ∀x , y ∈ Pi , f j |i (x ∨ y) = f j |i (x) ∨ f j |i (y)

It should be noted that an equivalent property cannot be defined for conjunc-
tion, due to the possible loss of information. For instance, it might happen that two
elements x and y are such that f j |i (x) = f j |i (y) = � j while f j |i (x ∧ y) < � j . We
obtain the following definition:

Definition 3.1. (Boolean representation system) A boolean representation system
(or b.r.s. for short) is a representation system S of the form 〈I, {Bi }, { fi | j }〉 where
every Bi is a boolean algebra and such that the transformation functions verify the
inversion and join-preservation properties.

It should be noted that in a boolean representation system, extremal elements
are mapped to extremal elements:

Proposition 3.1. Given a b.r.s. S = 〈I, {Bi }i∈I , { fi | j }i, j∈I〉, one has for all
i, j ∈ I:

f j |i (⊥i ) = ⊥ j f j |i (�i ) = � j (2)

Proof: From the inversion property, since fi | j (� j ) ≤ �i , one has f j |i (⊥i ) ≤ ⊥ j

from which follows the equality. For the greatest elements, by definition of �i , one
has fi | j ( f ⊥

j |i (�i )) ≤i �i . Now, using the monotony and composition properties of
transformation functions, it follows that:

f ⊥
j |i (�i ) ≤ j f j |i ◦ fi | j

(
f ⊥

j |i (�i )
) ≤ j f j |i (�i ) (3)

One concludes by remark that � is the only element of a boolean algebra such that
x⊥ ≤ x . �

3.1. Order Considerations

Given a boolean representation system S = 〈I, {Bi }, { fi | j }〉, it is possible to
extend the order relation of each boolean algebra to a global partial order. Following
the intuition behind the definition of representation systems, given an element
x ∈ Bi , its image f j |i (x) in B j is supposed to correspond to fewer information
than x , since some information might have been lost in the transformation, and
no other information have been added. More generally, for an element y ∈ B j , if
f j |i (x) ≤ j y, we will think of x as being more informative than y. We will use this
relation to compare all partial description of a representation system:
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Definition 3.2. Using the previous notations, let S� = {〈i, x〉|i ∈ I and x ∈ Bi }
be the disjoint union of S’s boolean algebras, and define the binary relation ≤�

on S� by:

〈i, x〉 ≤� 〈 j, y〉 ⇔ f j |i (x) ≤ j y (4)

Proposition 3.2. The binary relation ≤� is a pre-order, that is it is reflexive and
transitive.

Proof: Reflexivity corresponds to the identity property. Transitivity is a di-
rect consequence of the composition and monotony properties of transforma-
tion functions: if f j |i (x) ≤ j y and fk| j (y) ≤k z, then fk|i (x) ≤ fk| j ◦ f j |i (x) ≤k

fk| j (y) ≤k z. �

This pre-order has very strong relationships with the partial orders {≤i } of
the different boolean algebras of S.

Proposition 3.3. The relation ≤� extends the partial order of each boolean al-
gebra of S:

∀i ∈ I, ∀x , y ∈ Bi , x ≤i y ⇔ 〈i, x〉 ≤� 〈i, y〉 (5)

Proof: It is a direct consequence of the identity property: 〈i, x〉 ≤� 〈i, y〉 ⇔
fi |i (x) ≤i y ⇔ x ≤i y. �

The set S� can be equipped with an orthocomplementation operation ·⊥� ,
mapping an element 〈i, x〉 to 〈i, x〉⊥� = 〈i, x⊥〉.

Proposition 3.4. For all x and y in S�, one has:

x ≤� y ⇒ y⊥� ≤� x⊥� x⊥�⊥� = x (6)

Proof: The implication is a direct consequence of the definitions of ·⊥� and the in-
version property of transformation functions: 〈i, x〉 ≤� 〈 j, y〉 ⇒ f j |i (x) ≤ j y ⇒
fi | j (y⊥) ≤i x⊥ ⇒ 〈 j, y⊥〉 ≤� 〈i, x⊥〉. �

3.2. Obtention of a Poset

Since the relation ≤� defined so far is just a pre-order and not a partial order,
we will define the equivalence relation �� associated to ≤� in order to turn S� into
a poset.
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Definition 3.3. Let the relation �� be defined on S�×S� by:

〈i, x〉 �� 〈 j, y〉 ⇔ 〈i, x〉 ≤� 〈 j, y〉 and 〈 j, y〉 ≤� 〈i, x〉 (7)

It is obviously an equivalence relation on S�, permitting to identify those elements
of S� which cannot be distinguished with regards to ≤�. Let us introduce a few
notations: first, given an element x ∈ S�, [x] will denote the equivalence class of x ,
i.e. the set {y|x �� y}. S� will denote the quotient of S� by ��, so that its elements
are the equivalence classes of S�, and ≤� is the pre-order relation restricted to the
equivalence classes. It should be remark that this relation is well defined, and one
actually has:

Proposition 3.5. The pair 〈S�≤�〉 is a poset.

Proof: It should be first noted that for all 〈i, x〉 and 〈 j, y〉 in S�, one has:

〈i, x〉 ≤� 〈 j, y〉 ⇔ [〈i, x〉] ≤� [〈 j, y〉] (8)

This permits to show the reflexivity and transitivity of ≤�. Now, for the anti-
symmetry, suppose that both [〈i, x〉] ≤� [〈 j, y〉] and [〈 j, y〉] ≤� [〈i, x〉]. This im-
plies that 〈i, x〉 �� 〈 j, y〉, so that [〈i, x〉] = [〈 j, y〉]. �

Proposition 3.6. For all 〈i, x〉 and 〈 j, y〉 in S�, one has:

〈i, x〉 �� 〈 j, y〉 ⇔ ( f j |i (x) = y and fi | j (y) = x) (9)

Proof: The ⇐-direction is a direct consequence of the definition of ��. Con-
versely, one has if 〈i, x〉 �� 〈 j, y〉, then f j |i (x) ≤ j y and fi | j (y) ≤i x . Apply-
ing f j |i to the second inequality, one has y ≤ f j |i ◦ fi | j (y) ≤ j f j |i (x), so that
y = f j |i (x), and similarly, x = fi | j (y). �

The same way as we have defined a complement operation for S�, we can
define operation ·⊥� on S� by: [〈i, x⊥�〉] = [〈i, x⊥�〉] = [〈i, x⊥〉]. Proposition 3.4
ensures that this operation is well defined on equivalence classes, and one has:

Proposition 3.7. The tuple 〈S�, ≤�, ·⊥�〉 is an orthoposet.

Proof: This is a direct consequence of proposition 3.4:

[x] ≤� [y] ⇒ x ≤� y ⇒ y⊥� ≤� x⊥� ⇒ [y]⊥� ≤� [x]⊥� (10)

Likewise, one has [x]⊥�⊥� = [x⊥�⊥� ] = [x]. �

We finish our characterization of the structure of S� by showing that it has
extremal elements, and that partial join and meet operations can be defined.
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Proposition 3.8. For all i ∈ I and 〈 j, x〉 ∈ S�, one has: 〈 j, x〉 ≤� 〈i, �〉 and
〈i, ⊥〉 ≤� 〈 j, x〉.
Proof: This follows from the definition of � and ⊥. �

This shows that for all i, j ∈ I, [〈i, ⊥〉] = [〈 j, ⊥〉] and [〈i, �〉] = [〈 j, �〉]
and if ⊥� (resp. ��) denotes [〈i, ⊥〉] (resp. [〈i, �〉]) for some i in I, then ⊥�
(resp. ��) is the least (resp. greatest) element of S�.

Proposition 3.9. Given an indice i ∈ I and two elements x , y ∈ Bi , the meet
(resp. join) of [〈i, x〉] and [〈i, y〉] exists and is equal to [〈i, x ∨ y〉](resp.
[〈i, x ∧ y〉]).

Proof: First, from x ≤i x ∨ y, it follows that [〈i, x〉] ≤� [〈i, x ∨ y〉] and simi-
larly that [〈i, y〉] ≤� [〈i, x ∨ y〉]. Now, let 〈 j, z〉 be in S� and suppose that 〈i, x〉 ≤�

〈 j, z〉 and 〈i, y〉 ≤� 〈 j, z〉. One then has f j |i (x ∨ y) = f j |i (x) ∨ f j |i (y) ≤ j z from
the join-preservation property. Rewritten in terms of S�, we have shown that:

∀z ∈ S�, ([〈i, x〉] ≤� z and [〈i, y〉] ≤� z) ⇔ [〈i, x ∨ y〉] ≤� z (11)

Thus, the join of [〈i, x〉] and [〈i, y〉] (which we write [〈i, x〉] ∨� [〈i, y〉]) exists
and equals [〈i, x ∨ y〉]. The proof for the meet is even simpler: if fi | j (z) ≤i x and
fi | j (z) ≤i y then fi | j (z) ≤i x ∧ y. �

Corollary 3.1. For every element x in S�, x ∨� x⊥� (resp. x ∧� x⊥� ) exists and
is equal to �� (resp. ⊥�).

All these results are summarized in the following theorem:

Theorem 3.1. Given a pointed boolean representation system S, and using
the previous notations, the tuple OP(S) = 〈S�, ≤�, ·⊥� , ⊥�, ��〉 is a bounded
orthoposet.

For the sake of simplicity, from now on, the term orthoposet will always
correspond to a bounded orthoposet.

3.3. Projective Boolean Subalgebras

Given a b.r.s. S, the boolean algebras in S are special boolean subalgebras of
OP(S), which can be given a simple characterization.

Definition 3.4. Given an orthoposet P , a boolean subalgebra B of P is said to be
projective if and only if every element x of P has a projection xB in B, that is an
element such that: x ≤ xB and ∀y ∈ B, x ≤ y ⇒ xB ≤ y.
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Equivalenty, a boolean subalgebra B is projective if and only if there exists
an upper closure operator ρB such that x ∈ B ⇔ x = ρB(x).

Proposition 3.10. Every complete boolean subalgebra B of an orthoposet P is
projective.

Proof: This comes from the fact that for every element x of P , xB can be defined
as

∧{y ∈ B|x ≤ y}. �

Proposition 3.11. Given a b.r.s. S, with the usual notations, for all i ∈ I, Bi is
a projective boolean subalgebra of OP(S).

Proof: For x ∈ OP(S), there exists an indice i ∈ I and an element xi ∈ Bi such
that x = [〈i, xi 〉]. Then for every j ∈ I, the projection of x on B j is given by
[〈 j, f j |i (xi )〉]. �

The notion of projective boolean subalgebras of an orthoposet is closely
related to that of boolean representation system:

Proposition 3.12. Let P be an orthoposet and {Bi }I a collection of projective
boolean subalgebras of P such that P = ⋃

i Bi . For i, j ∈ I, define fi | j as the
function mapping every element x of B j to its projection xBi on Bi . Then S =
〈I, {Bi }, { fi | j }〉 is a boolean representation system and P = OP(S).

Proof: To prove that S is a b.r.s., one only needs to show that { fi | j } is a collection
of transformation functions, which follows directly from their definition. Now, for
every elements 〈i, x〉 and 〈 j, y〉 in S�, one has 〈i, x〉 ≤� 〈 j, y〉 ⇔ f j |i (x) ≤ j y ⇔
x ≤P y. This implies the equality P = OP(S). �

Thus, given an orthoposet P , a boolean representation system S such that
OP(S) = P can also be defined as a collection {Bi } of projective boolean subalge-
bras of P verifying P = ⋃

Bi . This equivalent way to describe boolean descrip-
tion systems permits to easily prove that every orthoposet can be obtained from a
boolean representation system.

Theorem 3.2. (Representation of Orthoposets). For every orthoposet P , there
exists a boolean representation system S such that P � OP(S).

Proof: For every element x ∈ P \ {�, ⊥}, the subset Bx = {�, ⊥, x , x⊥} is a
boolean subalgebra of P . Moreover, since it is finite, it is a complete boolean
algebra, so that from proposition 1, it is a projective boolean subalgebra of P .
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Now, define 2P as the b.r.s. corresponding to the collection {Bx |x ∈ P \
{�, ⊥}}. From proposition 3.12 follows the expect result: P = OP(2P ). �

Given an orthoposet, BRS(P) will denote the set of boolean representation
systems S such that OP(S) � P . In particular, 2P ∈ BRS(P).

These two theorems are extremely interesting in the light of quantum logic,
since they give a characterization of orthoposets in terms of boolean representation
families, which we have defined as a collection of classical points of view of a
given system. Indeed, orthoposets are algebraic structures which are very close to
orthoalgebras and orthomodular posets (Foulis et al., 1992; Foulis and Randall,
1981; Wilce, 2000) which play a central role in quantum logic (Chiara and Giuntini,
2001; Hughes, 1989).

The expression of this type of structure in terms of a decomposition as boolean
algebras already exists in many ways in the litterature (one can mention pastings
Dichtl, 1981; Greechie, 1971; Navara, 2000, semi-pastings Navara, 2000, partial
boolean algebras Hughes, 1985, for instance), and appears to be a powerful for the
study of orthomodular structures.

The decomposition which we have introduced above has the particularity
to stress the fact that the different boolean algebras used in the decomposition
correspond to different points of view of a system.

4. CONSISTENCY

We introduce a notion of consistency among the elements of a representation
system (not necessarily boolean) and use this notion to construct a completion of
the representation system, where one considers collections of consistent partial
descriptions. This way, one gets a poset which elements can be envisioned as
descriptions of the state of the system corresponding to the initial representation
system, and are usually more informative than the original partial descriptions
considered on their own.

4.1. Definitions

It might happen that two descriptions, belonging to different posets, do cor-
respond to a single situation. This happens when each description provides more
information in its own poset that the other. Formally, this corresponds to the fol-
lowing situation:

Definition 4.1 (Co-consistency). Given two indices i, j ∈ I, an element x ∈ Pi

and another element y ∈ P j , the pairs 〈i, x〉 and 〈 j, y〉 are co-consistent if and
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only if they verify:

x ≤i fi | j (y) y ≤ j f j |i (x) (12)

Example 4.1. In the example of the firefly in a box, the two descriptions 〈x , left〉
and 〈y, up〉 are co-consistent.

In the time zones example, the two descriptions 〈0h, [12, 13]〉 and
〈5h30, [17, 18]〉 are co-consistent. In that case, it means that the time in the G.M.T.
zone is between 12h00 and 12h30, even though the latter information cannot be
represented exactly.

This illustrates the fact that a pair of co-consistent elements provides strictly
more information about the system. We extend this notion by considering consis-
tent families, containing an element for each poset of the representation system:

Definition 4.2 (Consistent Family). A consistent family is an element x = {xi }
in

∏
i∈I Pi such that:

∀i, j ∈ I, xi ≤i fi | j (x j ) (13)

Following the intuition provided by pairs of co-consistent descriptions, a
consistent family can be envisioned as a partial description of the system which is
more precise than any of its components, but which cannot in general be related to
a single point of view. One might wonder whether there exists consistent families
for a given representation system, and we now show that it is always the case, and
that every element of every poset can be used to define a consistent family:

Proposition 4.1. Given an indice i ∈ I and an element u ∈ Pi , the family
{ f j |i (u)} j∈I is consistent.

Proof: This results from the composition property: fk|i (u) ≤ fk| j ( f j |i (u)). �

Moreover, the set of consistent families can be turned into a poset, using the
pointwise partial order and in that case, every poset of the original representation
system can be obtained as an approximation as in example Poset Approximation
p. 8:

Proposition 4.2. Given a representation system S = 〈I, {P}i , { fi | j }〉, define the
poset PS as the collection of consistent families of S, ordered pointwise, and for
every i ∈ I, define ρi on PS as ρi ({x j } j ) = { fk|i (xi )}k . Then:

1. For all i ∈ I, ρi is an upper closure operator on PS.
2. For all i ∈ I, Pi is isomorphic to {x ∈ Pi |x = ρi (x)}.
3. For all i, j ∈ I, fi | j = ρi |P j with the previous isomorphism.
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Proof: For the first point, the monotony of transformation functions permits to
show both the monotony and the fact that ∀x , x ≤ ρi (x). Since fi |i is the identity
on Pi , it follows that ρi ◦ ρi = ρi .

For the second point, a consistent family x verifying x = ρi (x) is such that
∀ j, x j = f j |i (xi ), so that the pair of functions x �→ xi and x �→ { f j |i (x)} j forms an
isomorphism between {x ∈ Pi |x = ρi (x)} and Pi . The last point is a direct conse-
quence of the second one. �

Let us now turn back to boolean representation systems, and study the way
consistent families of a b.r.s. S relate to OP(S).

4.2. Consistent Representations and Completions

Let S be a b.r.s. and, using the usual notations, let x be an element of Bi .
From proposition 4.1, x can be used to define a consistent family { f j |i (x)} j . For
all j ∈ I, one has 〈i, x〉 ≤� 〈 j, f j |i (x)〉 so that for this consistent family, only
x = fi |i (x) appears to be the only relevant element, if one considers information.
This suggests that only least elements of a consistant family are important, so that
they may fruitfully be associated to filters of OP(S). To develop this, let us first
remind a few notations and introduce some notations.

Definition 4.3 (Filter). Given a poset P , a filter of P is a subset F ⊆ P such that
for all x ∈ I and y ∈ P , if x ≤ y, then y ∈ F . In other words, a filter of a poset is
an upwards-closed subset.

In the following, ℘↑(P) will denote the set of filters of a poset P , and given
an element x ∈ P , x↑ will correspond to the filter {y ∈ P|x ≤ y}. Such a filter is
said to be principal.

Thus, as stated previous, we will associate consistant families of a b.r.s. S to
filters of OP(S) and, more precisely, we will use consistent families to characterize
classes of filters of a bounded orthoposet:

Definition 4.4 (Consistent Representation of Filters). Given a bounded ortho-
posetP and a b.r.s.S ∈ BRS(P), a filter F ∈ ℘↑(P) has a consistent representation
in S if and only if there exists a consistent family x = {xi } in S such that:

F =
⋃

i∈I
[〈i, xi 〉]↑ (14)

It is easy to express the fact that a filter has a consistent representation in a
given b.r.s. in terms of projective boolean subalgebras. First, for a filter F of an
orthoposet P and for a projective boolean subalgebra B is P , we will say that F
is closed for B if and only if F ∩ B is a principal filter of B.
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Proposition 4.3. A filter F ∈ ℘↑(P) has a consistent representation in S if and
only if for all i ∈ I, F is closed for Bi .

Proof: First, let x = {xi } be a consistent family of S such that F = ⋃
i [〈i, xi 〉]↑.

From the equality F ∩ Bi = ⋃
j ([〈i, xi 〉]↑ ∩ Bi ) and the fact that x is a consistent

family, it follows that F ∩ Bi = [〈i, xi 〉]↑ ∩ Bi , so that it is principal in Bi .
Conversely, if F is closed for every Bi , define xi as the least element of

F ∩ Bi . Obviously, F = ⋃
i [〈i, xi 〉]↑, so what remains to be show is that {xi } is a

consistent family. But fi | j (x j ) is the projection of x j on Bi , so that xi ≤ fi | j (x j )
as F ∩ Bi = xi

↑. �

For an orthoposet P and a b.r.s. S ∈ BRS(P), let ℘↑(P , S) denote the set
of filters of P having a consistent representation in S. This set can be given the
structure of a poset by considering reverse inclusion of filters.

Proposition 4.4. Given an orthoposetP and a b.r.s. S ∈ BRS(P), for all x ∈ P ,
one has x↑ ∈ ℘↑(P , S) where x↑ = {y ∈ P|x ≤ y}.

Proof: This follows directly from proposition 4.1. �

Proposition 4.5. For every filter F in ℘↑(P , S) with S ∈ BRS(P), F #= ∅ and
either ⊥ ∈ F or ∀x ∈ P , x ∈ F ⇒ x⊥ #∈ F.

Proof: Let x = {xi } be a consistent representation of F inS. First, F is not empty
since ∀i, xi ∈ F . Now, suppose that ⊥ #∈ F and let y be an element of F . There
is an indice i such that y ∈ Bi , so that xi ≤ y. Now, since ⊥ #∈ F , then xi #= ⊥ so
that xi #≤ y⊥. As a consequence, since y⊥ is also in Bi , y⊥ #∈ F . �

Proposition 4.6. For all F in ℘(P), F is in ℘(P , 2P ) if and only if F #= ∅ and
if ⊥ #∈ F, then ∀x ∈ F , x⊥ #∈ F.

Proof: The ⇒-direction corresponds to proposition 4.5. Let us prove the other
direction, and for y ∈ P \ {�, ⊥}, consider the intersection F ∩ By whereBy is the
boolean algebra generated by {y}. First, one has � ∈ F ∩ By . Now, if ⊥ #∈ F then it
cannot be that both y and y⊥ are in F ∩ By . This shows that F is closed forBy . One
concludes using 4.3. �

A direct consequence of proposition 4.4 is that given an orthoposet P and a
b.r.s. S ∈ BRS(P), x �→ x↑ is a poset embedding of P into ℘↑(P , S): it is one-to-
one, and if x ≤ y, then y↑ ⊆ x↑. Thus, ℘↑(P , S) can be seen as a completion of the
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initial orthoposet P . Let us define Compl(P) as the set {℘↑(P , S)|S ∈ BRS(P)}.
It can be given the structure of a lattice, using inclusion as partial order relation.

Proposition 4.7. Compl(P) is complete lattice which greatest element is ℘↑(P ,
2P ) and which join operation is defined by:

∀C ⊆ Compl(P),
∧

C = {F |∀C ∈ C, F ∈ C} (15)

Proof: The fact that ℘↑(P , 2P ) is the greatest element of Compl(P) follows
directly from propositions 4.5 and 4.6.

Now, let C be a subset of Compl(P), and for every C ∈ C, let SC be a b.r.s.
in BRS(P) such that C = ℘↑(P , SC). In terms of projective boolean subalgebras
of P , F is in C if and only if it is closed for every boolean subalgebra B in SC .
From proposition 3.12, one can define a b.r.s. S∧ using the union w.r.t. C of the
projective boolean subalgebras of SC . This definition directly implies that

∧
C =

℘↑(P , S∧). �

An open question which follows from this proposition is the characterization
of the least element of Compl(P), since its existence is proved.

Let us now consider another problem related to the completions of an ortho-
poset. In general, only the partial order relation is preserved by the embedding
x �→ x↑. Thus, even though one starts with an orthoposet, the orthocomplement
operation may not have a counterpart in the completion.

In the next section, we will consider a property on completions of a given
orthoposet P which permits to define a form of orthocomplementation in the
completion, and will use this to construct an orthoposet embedding of P into a
Heyting algebra.

5. ORTHOCOMPLETIONS

Given an orthoposet P and a completion C of it, proposition 4.5 has the
following direct consequence:

∀F ∈ C, ∀x ∈ P , x ∈ F ⇒ (∀G ≤C F , x⊥ ∈ G ⇒ ⊥ ∈ G
)

(16)

We use its converse to characterize a subset of Compl(P).

Definition 5.1 (Orthocompletion). Given a completion C ∈ Compl(P), C is an
orthocompletion of P if and only if:

∀F ∈ C, ∀x ∈ P\F , # ∃G ≤C F, x⊥ ∈ G and x #∈ G (17)

Proposition 5.1. Given an orthoposet P , ℘↑(P , 2P ) is an orthocompletion
of P .
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Proof: As shown in proposition 4.6, a filter F is in ℘↑(P , 2P ) if and only if it
is nonempty, and either ⊥ ∈ F or ∀x ∈ F , x⊥ #∈ F . So, let F be such a filter and
let x be in P \ F . Define filter G as F ∪ x⊥↑. G is such that it contains F ∪ {x⊥}
but not x , so that it only remains to show that G ∈ ℘↑(P , 2P ). For this, suppose
that there is an element y ∈ P such that {y, y⊥} ∈ G. Since both F and x↑ are
in ℘↑(P , 2P ), the only possibility, without loss of generality, is that y ∈ F and
y⊥ ∈ x⊥↑. But in that case, x⊥ ≤ y⊥ so that y ≤ x and finally x ∈ F , which is
false. �

Equivalently, the property characterizing orthocompletions can be written as:

∀F ∈ C, ∀x ∈ P , (∀G ∈ C, F ∪ {x} ⊆ G ⇒ ⊥ ∈ G) ⇒ x⊥ ∈ F (18)

Finally, this proposition can be written in a interesting third way. For this, dually to
filters, define an ideal of a posetP as a subset I ⊆ P such that ∀x ∈ I , ∀y ∈ P , y ≤
x ⇒ y ∈ I . Let ℘↓(P) denote the set of ideals of P , and for x ∈ P , define x↓ as
{y ∈ P|y ≤ x}. Then, considering a completion C as a poset, for x ∈ P , x↑↓ =
{F ∈ C|x ∈ F} so that equation 17 can be expressed as:

∀x ∈ P ,
{

F ∈ C|∀ G ≤C F , G ∈ x↑↓ ⇒ G ∈ ⊥↑↓} = x⊥↑↓ (19)

One can recognize in this expression the pseudocomplement operation of a
Heyting algebra of the form ℘↓(P) for any poset P .

Heyting algebras (Birkhoff, 1967; Goldblatt, 1979) are a generalization of
boolean algebras and are the models of intuitionistic logic. In particular, a Heyting
algebra H is a distributive lattice with a least element ⊥ and a pseudo-complement
operation · → · such that:

∀x , y, z ∈ H, x ∧ y ≤ z ⇔ x ≤ y → z (20)

This permits to define a negation ¬x as x → ⊥.
In the case of a Heyting algebra defined as the set of ideals of a poset, the

meet and join operations correspond to the union and the intersection respectively,
and the pseudo-complement is defined as:

I1 → I2 = {x |∀x ′ ≤ x , x ′ ∈ I1 ⇒ x ′ ∈ I2} (21)

If P is a poset with a least element ⊥, one can instead consider a Heyting algebra
formed of the nonempty ideals of P , in which case the least element is {⊥}. The
next proposition shows an orthocompletion C of a bounded orthoposet P permits
to construct a Heyting algebra in which P can be embedded with preservation of
the orthocomplementation.

Proposition 5.2. Given an orthoposet P and an orthocompletion C of P , the
function x �→ x↑↓ from P to ℘↓(C)\{∅} is an orthoposet embedding, that is it is
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one-to-one, monotonous, and it verifies:

∀x ∈ P , ¬(x↑↓) = x↑↓ → ⊥↑↓ = (x⊥↑↓
) (22)

Proof: The injectivity and monotony of this function follow directly from its
definition. The equality ¬(x↑↓) = (x⊥)↑↓ is equivalent to equation 19. �

This construction can be related to the different attempts that exist to embed
quantum structures such as orthomodular lattices, orthoalgebras into classical log-
ical structures, such as boolean algebras which are the usual models of classical
logic. Embeddings into boolean algebras are presented in (Svozil, 1998; Calude
et al., 1999), where in particular it is shown than any orthoposet can be embed-
ded into a Boolean algebra, with preservation of the partial order relation and
the orthocomplementation (from results by Katrnoška, 1982 and by Zierler and
Schlessinger, 1965). It is also shown that it is not possible to preserve other usual
operations (such as join and meet) without drastic restrictions.

With regards to these results, the embedding which we have presented appears
to be a weaker result, since boolean algebras are special kinds of Heyting algebras.
However, considering Heyting algebras instead of boolean algebras do not permit
to hope for stronger embeddings. The reason for this is that an element x of the
original poset is mapped to x↑↓ which verifies x↑↓ = ¬¬(x↑↓) (this follows from
a double application of proposition 5.2) and that in a Heyting algebra H, elements
of the form ¬x do form a boolean algebra. However, where are usually more
orthocompletions of P than just 2P , as illustrated by the following proposition.

Proposition 5.3. Given an orthoposet P and a projective boolean subalgebra B
of P , two elements x ≤ y of P , there exists an orthocompletion C of P such that
every filter in C is closed for B.

Proof: Using proposition 3.13,B can be turned into a b.r.s.SB by adding boolean
subalgebras Bz = {�, ⊥, z, z⊥} for z ∈ P \ B. Due to the presence of B, filters in
CB = ℘↑(P , SB) are obviously closed for B. Thus, what remains to show is that
CB is an orthocompletion of P .

Let x be an element of P and F be a filter in this completion such that z #∈ F .
Let fB be the least element element of F ∩ B and for y ∈ P , let ρB(y) denote its
the projection on B, and define G = F ∪ x⊥↑ ∪ ( fB ∧ ρB(x⊥))↑. We first show
that G is in CB. For this, first remark that G is closed for B. Now, let y be in
P \ B. We show that G is also closed for By . Suppose that it is not the case, so that
G ∩ By = {�, y, y⊥}. Without loss of generality, six cases are to be considered.

1. The first three possibilities, which are {y, y⊥} ⊆ F , {y, y⊥} ⊆ x⊥↑ and
{y, y⊥} ⊆ ( fB ∧ ρB(x⊥))↑ are obviously impossible.
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2. If y ∈ F and x⊥ ≤ y⊥, then y ≤ x , which implies x ∈ F so that it is
impossible.

3. If y ∈ F and fB ∧ ρB(x⊥) ≤ y⊥, then one has fB ≤ ρB(y) and fB ∧
ρB(x⊥) ≤ ρB(y)⊥. As a consequence, fB ∧ ρB(x⊥) = ⊥ and G ∩ By #=
{�, y, y⊥} since it also contains ⊥. Thus, it is impossible.

4. The last case is when x⊥ ≤ y and fB ∧ ρB(x⊥) ≤ y⊥. Then, once again,
this implies that fB ∧ ρB(x⊥) = ⊥ which is not possible either.

We have thus shown that G is closed for every By in CB, so that G is in CB.
What remains is to ensure that x #∈ G. But x ∈ G would imply fB ∧ ρB(x⊥) ≤ x
and then fB ∧ ρB(x⊥) ≤ ρB(x⊥)⊥. As a consequence, one would have fB ∧
ρB(x⊥) = ⊥ and fB ≤ ρB(x⊥)⊥ ≤ x . This finally would imply that x ∈ F , which
is false. �

This shows that for every projective boolean subalgebra B of P , it is possible
to embed P in a Heyting algebra in such a way that for all x and y in B, one has
x↑↓ → y↑↓ = (x⊥ ∨ y)↑↓ and x↓↑ ∧ y↑↓ = (x ∧ y)↑↓.

Thus, the use of orthocompletions of P permits to construct Heyting algebras
in which P can be embedded. Moreover, this suggest that Heyting algebras and
intuitionistic logic are natural candidates into which to embed quantum structures
and can be related to some existing studies on the relationship between ortho-
modular structures and Heyting algebras in the one hand, and quantum logic and
intuitionistic logic in the other hand (Coecke et al., 2000; Coecke, 2002). This can
be justified as follows:

We have shown a way to decompose an orthoposetP as a collection of boolean
algebras using a boolean representation system in BRS(P). Furthermore, these
boolean representation systems permit to define completions ofP , which elements
correspond to partial descriptions of the studied system. Elements of P are then
special partial descriptions, those which can be “observed.” Now, a simple way to
study this system logically would be to associate to each logical proposition p a set
Ip of partial descriptions, those which provide enough information to ensure that p
actually holds. In this way, it appears that the set Ip has to be an ideal of the comple-
tion (since adding information preserves the provability of p), so that considering
the set of ideals of the completion, which is a Heyting algebra, follows naturally.

6. CONCLUSION AND PERSPECTIVES

We have presented representation systems, which can be seen as a formaliza-
tion of the notion of partial description of a system from different points of view. We
have then shown that with the restriction that each point of view corresponds to a
boolean algebra (thus behaving in a classical way), one could characterize the class
of orthoposets and use boolean representation systems to provide a decomposition
of orthoposets into boolean algebras.
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Using these decomposition, we have introduced a general way to construct
completions of an orthoposet. These completions permit to consider more partial
descriptions, with the restriction that the added ones may not in general be the result
of some observation process (contrary to the elements of the original orthoposet).

Finally, we have shown that some (at least one) of these completions could be
used to define a Heyting algebra in which the original orthoposet can be embedded
while preserving the partial order relation and the orthocomplementation operation.

These constructions suggest a general way to provide a logical study of quan-
tum systems. In our approach, embedding quantum structures into Heyting alge-
bras permits to focus on partial descriptions, and more precisely, on those partial
description given by the original quantum structure, which are interpreted as re-
sults of observation processes. Finally, it can be noted that this interpretation of
an orthoposet and the resulting embedding into a Heyting algebra also permits to
simply extend this study by adding a dynamic dimension, as initiated in (Brunet
and Jorrand, 2003, in press).
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